If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n-333=0
a = 1; b = 1; c = -333;
Δ = b2-4ac
Δ = 12-4·1·(-333)
Δ = 1333
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1333}}{2*1}=\frac{-1-\sqrt{1333}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1333}}{2*1}=\frac{-1+\sqrt{1333}}{2} $
| .15(100-x)+x=50 | | 3(k−2)−6=4k−¿) | | 15(100-x)+x=50 | | 2x^-1+x^-1/2=6 | | 58x+55-34x-40-12x=81 | | 2y=88 | | -87=3(-4v-5 | | -2w+7/3=-5/3w-5/4 | | 5(2x-6)=100 | | 10n+0.3=0.1n | | 2(3x-6)+3x-14=90 | | z(z3+1)=5+z3 | | 7x+6=8x+2 | | 512x+2/3x=37 | | 2.8y-0.1y-5.4=0 | | 3^x+1/3x=10/3 | | -2x-22=-2(2x-8) | | x+6/x+3=2/5 | | 89-45=90-x= | | 4x-(x+2)+6=2(3x+8 | | 3x=17+5x=7x+10 | | 3(-4x-3)=57 | | 5x+8=13x-112 | | (4/5)^6x+1=(5/4) | | 49=7(7x+3) | | x/7+6=-8 | | 5/1/2x+2/3x=37 | | 0.25x+8=33 | | -20=8y | | (x/2)+9=14 | | 3.5v-26+13.5v=144 | | Y-30=1.25(x-4) |